Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2757: 447-460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668978

RESUMEN

Epigenomic regulation and dynamic DNA methylation, in particular, are widespread mechanisms orchestrating the genome operation across time and species. Whole-genome bisulfite sequencing (WGBS) is currently the only method for unbiasedly capturing the presence of 5-methylcytosine (5-mC) DNA methylation patterns across an entire genome with single-nucleotide resolution. Bisulfite treatment converts unmethylated cytosines to uracils but leaves methylated cytosines intact, thereby creating a map of all methylated cytosines across a genome also known as a methylome. These epigenomic patterns of DNA methylation have been found to regulate gene expression and influence gene evolution rates between species. While protocols have been optimized for vertebrate methylome production, little adaptation has been done for invertebrates. Creating a methylome reference allows comparisons to be made between rates of transcription and epigenomic patterning in animals. Here we present a method of library construction for bisulfite sequencing optimized for non-bilateral metazoans such as the ctenophore, Mnemiopsis leidyi. We have improved upon our previously published method by including spike-in genomic DNA controls to measure methylation conversion rates. By pooling two bisulfite conversion reactions from the same individual, we also produced sequencing libraries that yielded a higher percentage of sequenced reads uniquely mapping to the reference genome. We successfully detected 5-mC in whole-animal methylomes at CpG, CHG, and CHH sites and visualized datasets using circos diagrams. The proof-of-concept tests were performed both under control conditions and following injury tests with changes in methylation patterns of genes encoding innexins, toxins and neuropeptides. Our approach can be easily adapted to produce epigenomes from other fragile marine animals.


Asunto(s)
Ctenóforos , Metilación de ADN , Animales , Ctenóforos/genética , Sulfitos/química , Epigenómica/métodos , Epigénesis Genética , Epigenoma , 5-Metilcitosina/metabolismo , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , Genoma
2.
Integr Comp Biol ; 55(6): 1096-110, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26173712

RESUMEN

Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties.


Asunto(s)
Evolución Biológica , Ctenóforos/metabolismo , Metilación de ADN/fisiología , Animales , Epigénesis Genética , Epigenómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...